Course Title: Math Applications in Water Distribution

Course Hours: 19 (1.9 CEUs)

Course Description:

This course focuses on math concepts related to water distribution system operation and maintenance and applies these concepts to work-related math problems. Operators practice solving math problems while getting step-by-step instructions. This course covers topics that operators encounter on the job. It does not attempt to cover the topics of any state certification exam.

Course Objectives:

Upon completion of this course, participants will be able to perform math calculations typically used in water distribution systems. Course objectives include:

- Solve problems related to calculating flow rate, dose, and feed rate of chemicals
- Calculate acre-feet as a unit for volume
- Calculate needed doses for algae control
- Calculate the amount of liquid polymer needed to achieve a desired dose

Course Outline:

- 1) Basic Math Concepts (250 minutes)
 - a. Numbers and Operations
 - b. Order of Operations
 - c. Basic Algebra
 - d. Percentages
- 2) Intermediate Math Concepts (290 minutes)
 - a. Units
 - b. Area
 - c. Volume
 - d. Mass and Weight
 - e. Density and Specific Weight
 - f. Concentration
 - g. Velocity and Flow Rate
 - h. Force and Pressure
 - i. Work, Head, and Power
 - j. Metric System
- 3) Advanced Math Concepts (320 minutes)
 - a. Pumps
 - b. Evaluating Pump Performance
 - c. Analyzing and Presenting Data
 - d. Describing Data or Results
 - e. Moving Averages
 - f. More Applications of Graphing and Charting
 - g. Regression Analysis (Prediction Equations, Trends, and Correlations)
- 4) Overview of Math Applications in Water Distribution System Operation (5 minutes)
 - a. Introduction
- 5) Basic Calculations in Water Distribution Systems (25 minutes)
 - a. Discussion of flow rate and velocity relationship

- b. Work through example problems 1–3
- c. Estimate concentration (dose)
- 6) Distribution Facilities (50 minutes)
 - a. Discussion of flow rate and velocity relationship in distribution facilities
 - b. Application of Hazen-Williams equation to flow rate and velocity estimations
 - c. System leakage rate estimation
 - d. Work through example problems 1-8
 - e. Gauge pressure and total pressure
 - f. Watch 1 video about uplift force
 - g. Discussion of uplift force exerted by groundwater and estimating uplift force for underground storage tanks
- 7) Distribution Systems Operation and Maintenance (50 minutes)
 - a. Discussion of how total trihalomethanes (TTHM) are formed and estimating TTHM running averages from data
 - b. Discussion of how to determine the accuracy of meters that measure variables such as pressure and temperature
 - c. Calculate the volume of excavation
 - d. Work through example problems 1-9
 - e. Estimate storage tank volume
 - f. Estimate flow rate from a hydrant
- 8) Disinfection (30 minutes)
 - a. Discussion of the relationship between chlorine demand and chlorine residual
 - Estimate the mass of chlorine based on the relationship between concentration and volume
 - c. Work through example problems 1–5
 - d. Estimate the volume of hypochlorite solution needed based on the strength of solutions and chlorine dose
- 9) Final Exam (120 minutes)

Course Format: This course will be delivered online.

Assessment Methodology: Cumulative online assessment (final exam, 120 minutes)

Prerequisites: None

Textbook: None

Recommended Reading: "Water Distribution System Operation and Maintenance," Seventh Edition. Office of Water Programs, www.owp.csus.edu